Responsible Machine Learning
Assignment 1
10 points

March 18, 2025

In Assignment 1, you will train explainable machine learning (ML) models following the instructions below.
A template has been provided as an example of how to train and compare a few different explainable models.
Ensure Python 3, Git and Java are installed. Please let me know immediately if you find typos or mistakes
in this assignment or related materials.

1 Download Data.

Download Home Mortgage Disclosure Act (HMDA) data as zip files from this folder in the class repository.
The folder includes two data files:

e hmda_train_preprocessed.zip — Zipped CSV HMDA labeled training data.

e hmda_test_preprocessed.zip — Zipped CSV HMDA unlabeled test data.

Later you will score the unlabeled test data with your models and submit these scores as part of your
assignment deliverable. See cell 3 in the template.

2 Load and Explore Data.

Load the data into modeling software. Training data contains 160338 rows and 23 columns. Test data
contains 19831 rows and 22 columns. The features to use for Assignment 1 are as follows:

e high priced: Binary target, whether (1) or not (0) the annual percentage rate (APR) charged for a mortgage is
150 basis points (1.5%) or more above a survey-based estimate of similar mortgages. (High-priced mortgages are
legal, but somewhat punitive to borrowers. High-priced mortgages often fall on the shoulders of minority home
owners, and are one of many issues that perpetuates a massive disparity in overall wealth between different
demographic groups in the US.)

e conforming: Binary numeric input, whether the mortgage conforms to normal standards (1), or whether the
loan is different (0), e.g., jumbo, HELOC, reverse mortgage, etc.

e debt_to_income_ratio_std: Numeric input, standardized debt-to-income ratio for mortgage applicants.

e debt_to_income ratio missing: Binary numeric input, missing marker (1) for debt_to_income ratio_std.
e income_std: Numeric input, standardized income for mortgage applicants.

e loan_amount_std: Numeric input, standardized amount of the mortgage for applicants.

e intro_rate_period_std: Numeric input, standardized introductory rate period for mortgage applicants.

e loan to_value ratio_std: Numeric input, ratio of the mortgage size to the value of the property for mortgage
applicants.


https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/assignments/assignment_1/assign_1_template.ipynb?flush_cache=true
https://github.com/jphall663/GWU_rml/tree/master/assignments/data

e no_intro_rate_period_std: Binary numeric input, whether or not a mortgage does not include an introductory
rate period.

e property_value_std: Numeric input, value of the mortgaged property.

e term 360: Binary numeric input, whether the mortgage is a standard 360 month mortgage (1) or a different
type of mortgage (0).

See cell 4 in the template for modeling roles.

This data contains no major quality issues, so no preprocessing is required. Please familiarize yourself with
the data using basic exploration techniques — see cells 5-6 in the template. You may optionally try to
improve your model with feature engineering or other preprocessing approaches.

Training data should be used to create training and validation partitions. Test data will only be used to
evaluate your models by the instructor. See cell 7 in the template.

3 Train Explainable Models

Train at least two types of explainable models, ensuring best practices like reproducibility, validation-based
early-stopping, and grid search are used. (Scikit-learn does not necessarily make applying such best practices
easy.) You are encouraged to try packages like PiML, h20, interpret, and XGBoost, but you may use any
explainable approach on which you will be able to apply explanation, discrimination testing and remedia-
tion, and model debugging approaches in coming weeks. Please reach out with questions about appropriate
modeling techniques.

The template contains examples for elastic net logistic regression using h2o (see cells 8-10), monotonic
gradient boosting machines (GBM) using XGBoost (see cells 12-14), and explainable boosting machines
(EBM) using interpret (see cells 16-18).

4 Submit Code Results

Your deliverable for this assignment has two parts. Each part is worth 5 points.

e You must check in your code to a public GitHub repository by the deadline below. Code should be
available as a commented script, Jupyter notebook, R markdown or other polished and professional
format.

e You must create submission files with output probabilities for each row of the test data. The sub-
mission file should have one column named phat. Each model should have a separate submission file
named using a <personal _or_group_indentifier> <model_type>.csv convention, similar to the ex-
ample submission file. See cells 11, 15, and 19 for examples of writing submission files. Your group’s
submission will be ranked using the cross-validated ranking method discussed during Lecture 1. The re-
maining five points for the assignment will be issued based on this ranking. You will have opportunities
to increase your rank each week of the class.

Your deliverables are due Wednesday, March 26", at 11:59:59 PM ET.

Please send an email to jphall@gwu.edu by that deadline with the link to your group’s GitHub page and
with your zipped submission files.


https://selfexplainml.github.io/PiML-Toolbox/_build/html/index.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/downloading.html
https://github.com/interpretml/interpret
https://xgboost.readthedocs.io/en/latest/install.html
https://github.com/jphall663/GWU_rml/blob/master/assignments/assignment_1/ph_glm.csv
https://github.com/jphall663/GWU_rml/blob/master/assignments/assignment_1/ph_glm.csv
mailto:jphall@gwu.edu

	Download Data.
	Load and Explore Data.
	Train Explainable Models
	Submit Code Results

