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Grading and Policy

Grading:
* 2 Weekly Assignments
* 2 GitHub model card (Mitchell et al., 2019)
¢ & Class participation

Project:
® HMDA data using techniques from class
® Individual or group (no more than 4 members)
® Groups randomly assigned by instructor, with consideration of time zone

Syllabus
Office hours: (77)
Class resources: https://jphall663.github.io/GWU_rml/


https://jphall663.github.io/GWU_rml/
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Post-hoc Explanations
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Responsible Artificial Intelligence

“The designing and building of intelligent systems that receive signals from the environment
and take actions that affect that environment.”
— Russell (2010), Artificial Intelligence: A Modern Approach

“Responsible Artificial Intelligence is about human responsibility for the development of
intelligent systems along fundamental human principles and values, to ensure human-flourishing
and well-being in a sustainable world.”

— Dignum (2019), Responsible Artificial Intelligence


https://aima.cs.berkeley.edu/
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Risk and Responsibility

The NIST Al Risk Management Framework (Tabassi (2023)) characterizes risk as a “composite
measure of an event’s probability of occurring and the magnitude or degree of the
consequences of the corresponding event. The impacts, or consequences, of Al systems
can be positive, negative, or both and can result in opportunities or threats.”

The Draft European Union Al Act categorizes the following ML applications as high risk:
biometric identification; management of critical infrastructure; education; employment;
essential services, both public (e.g., public assistance) and private (e.g., credit lending); law
enforcement; immigration and border control; criminal justice; and the democratic process.

Increased financial, legal, regulatory, or ethical considerations in high-risk applications should
inspire practitioners to act with greater responsibility.


https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://artificialintelligenceact.eu/
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What About Machine Learning?

Computer

Science

Artificial
Intelligence

“[A] field of study that gives computers the —
ability to learn without being explicitly Learning

programmed.” -
— Arthur Samuel, circa 1960 Learning

| Statistical

Statistics
Learning
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A Responsible Machine Learning Workflow
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Source: A Responsible Machine Learning Workflow. (Gill et al. (2020))



https://www.mdpi.com/2078-2489/11/3/137/htm
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A Responsible ML Workflow: Explainable Models

Alternative
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model decisions
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privacy or security

Source: A Responsible Machine Learning Workflow. (Gill et al. (2020))



https://www.mdpi.com/2078-2489/11/3/137/htm
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Explainable ML Models

Interpretation: a high-level, meaningful mental representation that contextualizes a
stimulus and leverages human background knowledge. An interpretable model should
provide users with a description of what a data point or model output means in context
(Broniatowski, 2021).

Explanation: a low-level, detailed mental representation that seeks to describe some
complex process. An ML explanation is a description of how some model mechanism or
output came to be (Broniatowski, 2021).
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Explainable ML Models

There are many types of explainable ML models. Some might be directly interpretable to
non-technical consumers. Some are only explainable to highly-skilled data scientists.
Interpretability is not an on-and-off switch.

Explainable models are crucial for risk management, documentation, compliance, explanation
of predictions to consumers, finding and fixing discrimination, and debugging other problems in
ML modeling pipelines. Simply put, it is very difficult to mitigate risks you don't
understand.

There is not necessarily a trade-off between accuracy and explainabillity, especially for
structured data.



12

Introduction
0O000000@000

Some Characteristics of Explainable ML Models
(Sudjianto and Zhang, 2021)

Additivity: Whether/how model takes an additive or modular form. Additive
decomposition of feature effects tends to be more explainable.

Sparsity: Whether/how features or model components are regularized. Having fewer
features or components tends to be more explainable.

Linearity: Whether/how feature effects are linear. Linear or constant feature effects are
easy to explain.

Smoothness: Whether/how feature effects are continuous and smooth. Continuous and
smooth feature effects are relatively easy to explain.

Monotonicity: Whether/how feature effects can be modeled to be monotone. When
increasing/decreasing effects are desired by expert knowledge they are easy to explain.

Visualizability: Whether/how the feature effects can be directly visualized. Visualization
facilitates the final model diagnostics and explanation.
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Background

We will frequently refer to the following terms and definitions today:
® Pearson correlation: Measurement of the linear relationship between two input
X; features; takes on values between -1 and +1, including 0.
® Shapley value: a quantity, based in game theory, that accurately decomposes the
outcomes of complex systems, like ML models, into individual components.
* Partial dependence and individual conditional expectation (ICE):
Visualizations of the behavior of X; under some model g.
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Background: Notation

Spaces

® |nput features come from the set X’ contained in a P-dimensional input space,
X C RP. An arbitrary, potentially unobserved, or future instance of X is denoted
X, x € X.

® Labels corresponding to instances of X come from the set ).

* Learned output responses come from the set .
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Background: Notation

Datasets

® The input dataset X is composed of observed instances of the set X’ with a
corresponding dataset of labels Y, observed instances of the set ).

o Each i- th observation of X is denoted as
x{ [XO )>X1( ), . xﬁ, 1], with corresponding i-th labels in Y .y, and

correspondlng predictions in Y, (7).
e X and Y consist of N tuples of observations:
(<, y(@), (<) yW), . (N1 y (N1,
(1) ,(Nfl)]T_

® Each j-th input column vector of X is denoted as X; = [xj(o),xj e X
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Background: Notation

Models

* A type of machine learning (ML) model g, selected from a hypothesis set H, is
trained to represent an unknown signal-generating function 7 observed as X with

labels Y using a training algorithm A: XY A, g, such that g ~ f.

* g generates learned output responses on the input dataset g(X) = Y, and on the
general input space g(X) = ).

® The model to be explained, tested for discrimination, or debugged is denoted as g.
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Background: Gradient Boosting Machine

g%BM(x Z T (x; ©) (1)

A GBM is a sequential combination of decision trees, Tp, where Tg is trained to predict
y, but all subsequent T are trained to reduce the errors of Tp_1.
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The GAM Family of Explainable Models (fANOVA)

g°™M(x) = Bo + Bixo + Bax1 + - + Bpxp_1 (2)

g®"M(x) = Bo + Brgo(x0) + Bagi(x1) + -+ + Brgp_1(xp_1) (3)

g% M(x) = By + Brgo(x0) + Bagi(x1) + - - + Bpgp_1(xp_1) + -+
B0,180,1(x0,x1) + - + Bp—2,p—18P—2,P—1(XP—2,XP_1)

(4)

Where shape functions are fit with traditional spline techniques in GAM and GA2M, and shape
functions are fit with boosting and neural networks in GA2M variants like explainable boosting
machines (EBMs) and neural additive models (NAMs), respectively.
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Anatomy of Elastic Net Regression

Penalized linear models have the same basic functional form as more traditional linear
models, e.g. ...

g°™M(x) = Bo + Bixo + Baxa + - + Bpxp_1 (5)

... but are more robust to correlation, wide data, and outliers.
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Anatomy of Elastic Net Regression: L1 and L2 Penalty

Iteratively reweighted least squares (IRLS) method with ridge (L2) and LASSO (L;)
penalty terms:

P-1

e
(

6)

= min
P 8

{

: Least squares minimization

: Controls magnitude of penalties

: Tunes balance between L1 and L2
. La/Ridge penalty term

: L1 /LASSO penalty term

°
s W N

20



21

The GAM Family
0000000

Graphical lllustration of Shrinkage/Regularization Method:

Coefficients selected by
non-penalized model.

B2 B2

| ) 3 B1, B2)
* B _— B
—
\

Coefficients selected by
penalized model. L1
solution will be sparse.
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Generalized Additive Models and Explainable Boosting Machines

Generalized additive models (GAMs, Friedman, Hastie, and Tibshirani, 2001) extend GLMs by
allowing an arbitrary function for each X;:

g“"™M(x) = Bo + Brgo(x0) + Bagi(x1) + - + Brgp—1(xp_1) (7)
GAMs use spline approaches to fit each g;.

Later Lou et al., 2013 introduced an efficient technique for finding interaction terms

(8;.«8j.k(xj, x)) to include in GAMs. This highly accurate technique was given the acronym
GA2M.

Recently Microsoft Research introduced the explainable boosting machine (EBM) in the
interpret package, in which GBMs are used to fit each gj and gj «. Higher order interactions are
allowed, but used infrequently in practice.

Because each input feature, or combination thereof, is treated separately and in an additive
fashion, explainability is very high.


https://github.com/interpretml/interpret/

del Selection knowledgmen Reference
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Generalized Additive Models and Explainable Boosting Machines
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Generalized Additive Models and Neural Networks

Researchers have also put forward GA2M variants in which each g; and gj x shape
function is fit by neural networks, e.g., GAMI-Net (Yang, Zhang, and Sudjianto (2021))
and neural additive models (Agarwal et al. (2021)).

See the PIML package for an excellent implementation of GAMI-Net and other
explainable models.


https://selfexplainml.github.io/PiML-Toolbox/_build/html/index.html
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Monotonic GBM (Gill et al., 2020)

Monotonic GBM (MGBM) constrain typical GBM training to consider only tree splits
that obey user-defined positive and negative monotone constraints, with respect to
each input feature, Xj, and a target feature, y, independently. An MGBM remains an
additive combination of B trees trained by gradient boosting, Tp, and each tree learns a
set of splitting rules that respect monotone constraints, ©7'°"°. A trained MGBM
model, gMGBM, takes the form:

MGBM Z Tb X: emonO) (8)
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Monotone Constraints for GBM (Gill et al., 2020)

1. For the first and highest split in T}, involving X, any 6}, o resulting in T(x;;0pj.0) = {Wb,j,0,0, Wb,j,0,R}
where wp j 0.1 > Wp j o R, is nOt considered.
2. For any subsequent left child node involving X;, any 0y, ; >3 resulting in
T(Xj; eb,ﬂkZl) = {Wb,j,kZLD Wb,j,kzl,R} where Whj k>1,L > Wb j k>1,R: is not considered.
3. Moreover, for any subsequent left child node involving )<jr T(Xj; Gb,j,kzl) = {Wb,j,kzl,b Wb,j,kZI,R}t
{Wh j k>1,0, Wp jk>1,R} are bound by the associated 6, j 1 set of node weights,
Whjk—1,LtWp j k—1,R
{Wb,j,k—1,0, Wp,jk—1,R}: such that {wp j k>1,1, Wpjk>1,R} < —H—rg—b=2m,
4. (1) and (2) are also applied to all right child nodes, except that for right child nodes wp j «,1 < Wp j kR

Wpj k—1,LF Wb j k—1,R
and {Wpj k>1,0, Whjk>1,R} = —r—rg b=,

Note that gMBM(x) is an addition of each full T}, prediction, with the application of a
monotonic logit or softmax link function for classification problems. Moreover, each
tree's root node corresponds to some constant node weight that by definition obeys
monotonicity constraints, T(XJ-O‘; Ob0) = T(XJ’-B; Ob.0) = Wpo.
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Partial Dependence and ICE:
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A Burgeoning Ecosystem of Explainable Machine Learning Models

Explainable Neural Network (XNN) (Vaughan et al., 2018)
Rudin group:

® This looks like that deep learning (Chen et al., 2019)
Scalable Bayesian rule list (Yang, Rudin, and Seltzer, 2017)
Optimal sparse decision tree (Hu, Rudin, and Seltzer, 2019)
Supersparse linear integer models (Ustun and Rudin, 2016)
and more ...

® rpart
RuleFit (Friedman, Popescu, et al., 2008)

skope rules


https://www.mdpi.com/2078-2489/11/3/137
https://www.youtube.com/watch?v=k3IQnRsl9U4
https://github.com/scikit-learn-contrib/skope-rules
https://christophm.github.io/interpretable-ml-book/rulefit.html
https://github.com/scikit-learn-contrib/skope-rules

Model Selection
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Model Selection

Fold  Metric best gm Value best mgbm Value gbm11Value best_gim Rank best mgbm Rank gbm11 Rank

° Genera”y speaking, Standard ML 0 F1 0.533181 0551208 0.562353 30 20 1.0
. . 5 0 accuracy 0.816246 0817367 0.814006 20 1.0 30
evaluation — including Kaggle I L I
Ieaderboards, are poor ways to assess 0 logloss 0.468678 0440775 0.438078 30 20 1.0
0 mee 0.419924 0420105 0.426918 30 20 1.0
ML mOdel performance' 1 F1 0.540865 0554762 0.555283 30 20 1.0
° HOWeVer, Caruana, Joachims, and 1 accuracy 0.823882 0826063 0.828244 30 20 1.0
1 auc 0.729674 0776877 0.785956 30 20 1.0
Backstrom, 2004 pUtS fOfWard a rObUSt 1 logloss 0.465999 0434170 0.428677 30 20 1.0
model eVaIUatiOn and Se|eCti0n 1 mee 0.432722 0.445354 0.447637 3.0 20 1.0
2 F1 0.500593 0516364 0.530343 30 20 1.0
technique based on cross-validation 2 ey ossonn? ossoror  0sseas a0 20 0
and ranking. 2 auc 0.707507 0.760838 0769493 30 20 1.0

e PiML contains excellent real-world Three models are ranked across different metrics and folds. The

del lidati h I model with the highest rank, on average, across metrics and folds
model validation approaches as well. is the best model, gbmi1 in this case.
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