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What is an Explanation in Machine Learning (ML)?

“An explanation of a model result is a description of how a model’s outcome came to be.”
— David Broniatowski, GWU

Psychological Foundations of Explainability and Interpretability in Artificial Intelligence [7]

Variously defined along with aliases or similar concepts:
• “Towards a Rigorous Science of Interpretable Machine Learning” (Doshi-Velez and Kim [10])
• “Explaining Explanations” (Gilpin et al. [15])
• “A Survey Of Methods For Explaining Black Box Models” (Guidotti et al. [18])
• “The Mythos of Model Interpretability” (Lipton [26])
• Interpretable Machine Learning (Molnar [29])
• “Interpretable Machine Learning: Definitions, Methods, and Applications” (Murdoch et al. [32])
• “Challenges for Transparency” (Weller [45]).
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What do I Mean by Explainable ML?

Mostly post-hoc techniques used to enhance understanding of trained model
mechansims and predictions, e.g. ...

• Direct measures of global and local feature importance:
• Gradient-based feature attribution (Ancona et al. [2])
• Shapley values (Lundberg and Lee [28], Shapley [37])

• Global and local surrogate models:
• Decision tree variants (Bastani, Pu, and Solar-Lezama [6], Craven and Shavlik [9])
• Anchors (Ribeiro, Singh, and Guestrin [34])
• Local interpretable model-agnostic explanations (LIME) (Ribeiro, Singh, and Guestrin [35])

• Global and local visualizations of trained model predictions:
• Accumulated local effects (ALE) (Apley [4])
• Partial dependence (Friedman, Hastie, and Tibshirani [13])
• Individual conditional expectation (ICE) (Goldstein et al. [16])

• Counterfactual explanations (Mothilal, Sharma, and Tan [31])
• Example-based explanations (Molnar [29])
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Shapley Value

Shapley explanations, including TreeSHAP and even certain implementations of LIME,
are a class of additive, locally accurate feature contribution measures with
long-standing theoretical support ([28]).

For some observation x ∈ X , Shapley explanations take the form:

ϕj =
∑

S⊆P\{j}

|S |!(P − |S | − 1)!
P!︸ ︷︷ ︸

weighted average over all subsets in X

[gx(S ∪ {j})− gx(S)]︸ ︷︷ ︸
g "without" xj

(1)

g(x) = ϕ0 +

j=P−1∑
j=0

ϕjzj (2)
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Surrogate Decision Trees (DT)

Figure: htree for Taiwanese credit card data [24], and for machine-learned GBM response function g .
• Given a learned function g and set of predictions g(X), a surrogate DT can be

trained: X, g(X)
Asurrogate−−−−−→ htree.

• htree displays a low-fidelity, high-interpretability flow chart of g ’s decision making
process, and important features and interactions in g .

7
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Surrogate Decision Trees (DT)

• Always use error measures to assess the trustworthiness of htree.
• Prescribed methods ([9]; [5]) for training htree do exist. In practice, straightforward

cross-validation approaches are typically sufficient.
• Comparing cross-validated training error to traditional training error can give an

indication of the stability of the single tree model, htree.
• Hu et al. (2018) use local linear surrogate models, hGLM, in htree leaf nodes to

increase overall surrogate model fidelity while also retaining a high degree of
interpretability.

8
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Local Interpretable Model-agnostic Explanations (LIME)

Ribeiro, Singh, and Guestrin (2016) define LIME for some observation x ∈ X :

argmin
h∈H

L(g , h, πX) + Ω(h)

Here g is the function to be explained, h is an interpretable surrogate model of g , often
a linear model hGLM , πX is a weighting function over the domain of g , and Ω(h) limits
the complexity of h.

Typically, hGLM is constructed such that X(∗), g(X (∗))
Asurrogate−−−−−→ hGLM, where X(∗) is a

generated sample, πX weighs X(∗) samples by their Euclidean similarity to x, local
feature importance is estimated using βjxj , and L1 regularization is used to induce a
simplified, sparse hGLM .

9
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Local Interpretable Model-agnostic Explanations (LIME)

• LIME is ideal for creating low-fidelity, highly interpretable explanations for non-DT
models and for neural network models trained on unstructured data, e.g. deep
learning.

• Always use regression fit measures to assess the trustworthiness of LIMEs.
• LIME can be difficult to deploy, but there are highly deployable variants. ([20];

[19])
• Local feature importance values are offsets from a local intercept.

• Note that the intercept in LIME can account for the most important local
phenomena.

• Generated LIME samples can contain large proportions of out-of-range data that can
lead to unrealistic intercept values.
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• To increase the fidelity of LIMEs, try LIME on discretized input features and on
manually constructed interactions.

• Use cross-validation to construct standard deviations or even confidence intervals
for local feature importance values.

• LIME can fail, particularly in the presence of extreme nonlinearity or high-degree
interactions.

11
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Partial Dependence (PD) and Individual Conditional Expectation (ICE)

• Following Friedman, Hastie, and Tibshirani (2001) a single feature Xj ∈ X and its
complement set X(−j) ∈ X (where Xj ∪ X(−j) = X) is considered.

• PD(Xj , g) for a given feature Xj is estimated as the average output of the learned
function g when all the components of Xj are set to a constant x ∈ X and X(−j) is
left untouched.

• ICE(Xj , x(i), g) for a given observation x(i) and feature Xj is estimated as the
output of the learned function g when x

(i)
j is set to a constant x ∈ X and

x(i) ∈ X(−j) are left untouched.
• PD and ICE curves are usually plotted over some set of interesting constants
x ∈ X .

12
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Partial Dependence (PD) and Individual Conditional Expectation (ICE)

Figure: PD and ICE curves for Xj = num9, for known signal generating function
f (X) = num1 ∗ num4 + |num8| ∗ num2

9 + e, and for machine-learned GBM response function g .

Overlaying PD and ICE curves is a succinct method for describing global and local
prediction behavior and can be used to detect interactions. ([16])
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Partial Dependence (PD) and Individual Conditional Expectation (ICE)

Figure: Surrogate DT, PD, and ICE curves for Xj = num9, for known signal generating function
f (X) = num1 ∗ num4 + |num8| ∗ num2

9 + e, and for machine-learned GBM response function g .

Combining Surrogate DT models with PD and ICE curves is a convenient method for
detecting, confirming, and understanding important interactions.
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Why Explainable ML?

Responsible Use of Explainable ML can enable:
• Human learning from machine learning
• Human appeal of automated decisions
• Regulatory compliance3

• White-hat hacking and security audits of ML models

Even logistic regression is often “explained”, or post-processed, for credit scoring, e.g.
max. points lost method and adverse action notices.

3In the U.S., interpretable models, explanations, and the model documentation they enable may be required under the Civil Rights
Acts of 1964 and 1991, the Americans with Disabilities Act, the Genetic Information Nondiscrimination Act, the Health Insurance
Portability and Accountability Act, the Equal Credit Opportunity Act, the Fair Credit Reporting Act, the Fair Housing Act, Federal
Reserve SR 11-7, and the European Union (EU) General Data Protection Regulation (GDPR) Article 22 [46].
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Why Propose Guidelines?

Misuse and Abuse of Explainable ML can enable:
• Model and data stealing (Tramèr et al. [42], Shokri et al. [40], Shokri, Strobel, and Zick [39])
• False justification for harmful black-boxes, e.g. “fairwashing” (Aïvodji et al. [1], Rudin [36])

Explainable ML is already in-use:
• Numerous open source4 and commercial packages5 are available today.
• At least gradient-based feature attribution, partial dependence, and surrogate models are used for

model validation in financial services today.6,7

Regulatory guidance is not agreed upon yet.8

4Please contribute: https://github.com/jphall663/awesome-machine-learning-interpretability.
5For instance Datarobot, H2O Driverless AI, SAS Visual Data Mining and Machine Learning, Zest AutoML.
6See: https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=303053.
7See: Working paper: “SR 11-7, Validation and Machine Learning Models”, Tony Yang, CFA, CPA, FRM. KPMG USA.
8See: https://www.americanbanker.com/news/regulators-must-issue-ai-guidance-or-fdic-will-mcwilliams.
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Guidelines for Responsible Use of Explainable ML

1. Use explainable ML to enhance understanding.
2. Learn how explainable ML is used for nefarious

purposes.
3. Augment surrogate models with direct explanations.
4. Use highly transparent mechanisms for high stakes

applications (Rudin [36]).
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1: Use Explainable ML to Enhance Understanding

• Explanations enhance understanding directly, and increase trust
as a side-effect.

• Models can be understood and not trusted, and trusted
but not understood.

• Explanations alone are neither necessary nor sufficient for trust.

• Good explanations enable human appeal of model decisions.

18
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Understanding Without Trust

gmono monotonically-constrained probability of default (PD)
classifier trained on the UCI credit card dataset over-emphasizes
the most important feature, a customer’s most recent repayment

status, PAY_0 [24].

gmono also struggles to predict default for favorable statuses, −2 ≤ PAY_0 < 2,
and often cannot predict on-time payment when recent payments are late,

PAY_0 ≥ 2.

19
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Trust Without Understanding

Years before reliable explanation techniques were widely
acknowledged and available, black-box predictive models, such as
autoencoder and MLP neural networks, were used for fraud detection
in the financial services industry (Gopinathan et al. [17]). When
these models performed well, they were trusted.9 However, they were
not explainable or well-understood by contemporary standards.

9For example: https://www.sas.com/en_ph/customers/hsbc.html,
https://www.kdnuggets.com/2011/03/sas-patent-fraud-detection.html.
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2: Explainable ML Can be Used for Nefarious Purposes

When unintentionally misused, explainable ML can act as a faulty
safeguard for potentially harmful black-boxes.

When intentionally abused, explainable ML can be used for:
• Stealing data, models, or other intellectual property.
• Fairwashing, to mask the sociological biases of a discriminatory

black-box.

21
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AI Incident: ML Hacking
Many ML hacks use, or are exacerbated by, explainable ML techniques.10

10Source: O’Reilly Media, Responsible Machine Learning , Patrick Hall, Navdeep Gill, and Benjamin Cox.
22
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Case 2.1: White-hat Attacks Can Crack Potentially Harmful Black-boxes

The flip-side of the dark side is community oversight of black-boxes.

Recent high profile analyses of commercial black-boxes, e.g. ...
• Propublica and COMPAS (Angwin et al. [3])11

• Gendershades and Rekognition (Buolamwini and Gebru [8], Raji and
Buolamwini [33])

... could be characterized as white-hat attacks on proprietary black-boxes
(respectively, model stealing and adversarial examples).

11This presentation makes no claim on the quality of the analysis in Angwin et al. (2016), which has been criticized, but is simply
stating that such cracking is possible [3], [12].
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Case 2.2: Explanation is Not a Front Line Fairness Tool

Use fairness tools, e.g. ...

• Disparate impact testing (Feldman et al. [11])
• Reweighing (Kamiran and Calders [21])
• Reject option based classification (Kamiran, Karim, and Zhang [22])
• Adversarial de-biasing (Zhang, Lemoine, and Mitchell [48])
• aequitas, AIF360, Themis, themis-ml

... for fairness tasks: bias testing, bias remediation, and to establish trust.

Explanations can be used to understand and augment such results.
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3: Augment Surrogate Models with Direct Explanations

Naïve htree, a surrogate model, forms an approximate overall flowchart for
the explained model, gGBM.

Partial dependence and ICE curves generated directly from
the explained model, gGBM.

htree displays known interactions in f = Xnum1 ∗ Xnum4 + |Xnum8| ∗ X 2
num9 for ∼ −0.923 < Xnum9 <∼ 1.04.

Modeling of the known interaction between Xnum9 and Xnum8 in f by gGBM is also highlighted by the
divergence of partial dependence and ICE curves for ∼ −1 < Xnum9 <∼ 1.

25
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Example 3.1: Augment LIME with Direct Explanations

Locally accurate Shapley contributions for a high risk individual’s
probability of default as predicted by a simple decision tree model,
gtree. See slide 29 for a directed graph representation of gtree.

hGLM
Feature

hGLM
Coefficient

PAY_0 == 4 0.0009
PAY_2 == 3 0.0065
PAY_6 == 2 0.0036
PAY_5 == 2 −0.0006
PAY_AMT1 4.8062e−07
BILL_AMT1 3.4339e−08
PAY_AMT3 −5.867e−07

Coefficients for a local linear interpretable model, hGLM, with an
intercept of 0.77 and an R2 of 0.73, trained between the original
inputs and predictions of gtree for a segment of the UCI credit card
dataset with late most recent repayment statuses, XPAY_0>1.

Because hGLM is relatively well-fit and has a logical intercept, it can be used along with Shapley values to reason
about the modeled average behavior for risky customers and to differentiate the behavior of any one specific
risky customer from their peers under the model.

26
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4: Use Highly Transparent Mechanisms for High Stakes Applications

A diagram of a proposed workflow in which explanations are used along with interpretable models, disparate
impact analysis and remediation techniques, and other review and appeal mechanisms to create a fair,

accountable, and transparent ML system.
27
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Case 4.1: Use Interpretable Models for High Stakes Applications (Rudin [36])

In addition to penalized GLM, decision trees, and conventional rule-based models, many
other types of accurate and interpretable models are available today, e.g. ...

• Explainable boosting machine (EBM)
• Monotonic GBM in h2o or XGBoost
• RuleFit (Friedman, Popescu, et al. [14])
• Super-sparse linear integer model (SLIM) (Ustun and Rudin [43])
• Explainable neural network (XNN) (Vaughan et al. [44])
• Scalable Bayesian rule list (Yang, Rudin, and Seltzer [47])

... use them for human-centered or other high stakes ML applications.12

12There are shades of interpretability in models. Interpretability is probably not a binary, on-off quality. For instance see Figure 3:
https://arxiv.org/pdf/1904.03867.pdf [30].
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Case 4.2: Explanations and Interpretable Models are Not Mutually Exclusive

Simple decision tree, gtree, trained on the UCI credit card data to
predict default with validation AUC of 0.74. The decision policy for

high risk individuals is highlighted in fuschia.

Locally accurate Shapley contributions for the
highlighted individual’s probability of default. See

slide 26 for LIMEs for the high risk customers in gtree.

The Shapley values are helpful because they highlight the local importance of features not on the decision path,
which could be underestimated by examining the decision policy alone.
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Interlude: An Ode to the Shapley Value

1. In the beginning: A Value for N-Person Games, 1953 [37]

2. Nobel-worthy contributions: The Shapley value: Essays in honor of Lloyd S. Shapley, 1988 [38]

3. Shapley regression: Analysis of Regression in Game Theory Approach, 2001 [25]

4. First reference in ML? Fair Attribution of Functional Contribution in Artificial and Biological
Networks, 2004 [23]

5. Into the ML research mainstream, i.e. JMLR: An Efficient Explanation of Individual
Classifications using Game Theory, 2010 [41]

6. Into the real-world data mining workflow ... finally : Consistent Individualized Feature
Attribution for Tree Ensembles, 201713 [27]

7. Unification: A Unified Approach to Interpreting Model Predictions, 201714 [28]

13See h2o, LightGBM, or XGBoost for implementation.
14See shap for implementation.
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Case 4.3: Explanation and Fairness Techniques are Not Mutually Exclusive

ML model input features plotted by Shapley importance
and shortfall to equality – a basic fairness metric.

Many fairness toolkits are available today:
aequitas, AIF360, Themis, themis-ml.

These can be mixed with explanation
techniques, such as Shapley values, to great
benefit. See Explaining quantitative
measures of fairness for an example.

Traditional disparate impact testing tools
are best-suited for constrained models
because average group metrics cannot
reliably identify local instances of
discrimination that can occur when using
complex, unconstrained models.
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