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What is Model Debugging?

® Model debugging is an emergent discipline focused on discovering and remediating
errors in the internal mechanisms and outputs of machine learning models.*

* Model debugging attempts to test machine learning models like software (because
the models are software).

® Model debugging is similar to model validation and regression diagnostics, but for
machine learning models.

* Model debugging promotes trust directly and enhances interpretability as a
side-effect.

* .
See https://debug-ml-iclr2019.github.io/ for numerous examples of model debugging approaches.


https://debug-ml-iclr2019.github.io/
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Constrained, monotonic GBM probability of
default (PD) classifier, gmono-

Grid search over hundreds of models.

Best model selected by validation-based early
stopping.

Seemingly well-regularized (row and column
sampling, explicit specification of L1 and L2
penalties).

No evidence of over- or under-fitting.
Better validation logloss than benchmark GLM.

Decision threshold selected by maximization of F1
statistic.

BUT traditional assessment can be inadequate!

Precision

Validation Precision-Recall Curve for g,,,,,

‘w...\_‘

Best F1 at p = 0.27
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Machine learning models can be unnecessary.
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8mono PD classifier over-emphasizes the most important feature, a
customer’s most recent repayment status, PAY_0.
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Emono also struggles to predict default for favorable statuses,
—2 < PAY_O < 2, and often cannot predict on-time payment

when recent payments are late, PAY 0 > 2.
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Machine learning models can perpetuate sociological biases [1].

Adverse True
) Accuracy Positive Precision Specificity
mpact ! . . . - .
. N Disparity Rate Disparity Disparity
Disparity Disparity
single 0.988
divorced 1.014 0.932 0.809 0.806 0.958

1.169

other - 1.123

Group disparity metrics are out-of-range for gmono across different marital statuses.



Why?

Why Debug?

Machine learning models can have security vulnerabilities [2], [6], [7].}

Machine learning attack cheatsheet

Baddoorsandwatermarks

Data oisoring
———
i we

iSee https://bit.1ly/3jyYtzi for full size image.


https://bit.ly/3jyYtzi
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How to Debug Models?

As part of a holistic, low-risk approach to machine learning [4].

Alternative

> Explanations >
&
? >  Model debugging >
- Discrimination testing
: Faimess, & remediation

: privacy . Assessment
Quantifying risks

or security

! preprocessing
"----{Calibration

: [ Causal, constrained, fair, }

interpretable or private models

e Root cause |,____|Human appeal of Deployment,
Iterate: improve analysis model decisions management
& monitoring

faimess, : —
interpretability, i’{ Decommission

privacy or security
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Sensitivity Analysis: Partial

Distribution of DEFAULT_NEXT_MONTH
by PAY_O

Out-of-Range Partial Dependence with
Logloss Residuals

Out-of-Range Partial Dependence
with ICE
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Training data is very sparse for PAY 0 > 2.

ICE curves indicate that partial dependence is likely trustworthy and empirically confirm monotonicity, but

also expose adversarial attack vulnerabilities.
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Partial dependence and ICE indicate gmono likely learned very little for PAY 0 > 2.

PAY 0 = missing gives lowest probability of default.
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Sensitivity Analysis: Search for Adversarial Examples

D DELING. NEXT for PAY_0, AY_2, AT AMTY, PAYANTZ)

Adversary search confirms multiple avenues of
attack and exposes a potential flaw in gmnono
inductive logic: default is predicted for
customer’s who make payments above their
credit limit. (Try heuristics, evolutionary
learning or packages like cleverhans to generate
adversarial examples.)


https://github.com/tensorflow/cleverhans
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Sensitivity Analysis: Robustness to Drift

Model Performance: Perturb on All Features
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Figure: 8mono ACCuracy under feature perturbation.

Models must be robust to data drift once
deployed.

Simulation, perturbation, and statistics
like population stability index (PSI), t,
and Kolmogorov-Smirnov (K-S) can help
assess robustness.

Drift can also be measured on a
feature-by-feature basis across data
partitions.

Likely due to monotonicity contraints
Zmono holds up well to moderate data
perturbation.
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Sensitivity Analysis: Random Attacks

Ranked Predictions on Random Data
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In general, random attacks are a viable method to identify software bugs in machine learning pipelines.
(Start here if you don’t know where to start.)

Random data can apparently elicit all probabilities € [0, 1] from gmono-

Around the decision threshold, lower probabilities can be attained simply by injecting missing values, yet
another vulnerability to adversarial attack.

Chaos testing is a broader approach that can also elicit unexpected approaches from machine learning
systems.
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Sensitivity Analysis: Underspecification

Distribution of AUC Scores Across 100 Seeds

Frequency
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® Without domain-informed constraints ML models suffer from underspecification [3].

® Explicit tests for underspecification involve assessing model performance stability across perturbed
computational hyperparameters: seeds, threads, number of GPUs, etc.

® Likely due to monotonicity constraints, gmono performance appears stable across random seeds.
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Residual Analysis: Segmented Error Analysis

Error Metrics for PAY_0

True Positive
Rate

Prevalence Accuracy

Negative Predicted  False Positive False Negative
Procision _ Specificity Value Rate Rate Rate Rate

0626

0552

Notable change in accuracy and error characteristics for PAY 0 > 2.

For SEX, accuracy and error characteristics vary little across individuals represented in the training data. Bias mitigation should
be confirmed by more involved bias testing.

Overfitting, stability and other characteristics should also be analyzed by segment.

Varying performance across segments can be an indication of underspecification.
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Residual Analysis: Plotting Residuals
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Figure: Residuals plotted by PAY 0 reveal a
16 Serious problem with gmono.

¢ Plotting residuals is a battle-tested
model debugging technique.
® Residuals can be plotted using many
approaches:
® Overall, by feature (at left) or by
segment
* Traditional (y() — y(1)
® Deviance or loss residuals (at left)
® Residuals can reveal serious issues and
the underlying problems behind them.



How?

00e00

Residual Analysis: Local Contributions to Logloss

Local Shapley Feature Contributions to Logloss

Shapley Feature Contributions
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Exact, local feature contributions to logloss can be calculated, enabling ranking of features contributing to
logloss residuals for each prediction. Shapley contributions to XGBoost logloss can be calculated using the
shap package. This is a time-consuming calculation.


https://github.com/slundberg/shap
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Residual Analysis: Non-Robust Features

Global Shapley Feature Importance for Predictions Global Shapley Feature Importance for Logloss
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Globally important features PAY 3 and PAY 2 are more important, on average, to the loss than to the
predictions.
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Residual Analysis: Modeling Residuals

Decision tree model of gmono DEFAULT NEXT MONTH = 1 logloss residuals with
3-fold CV MSE = 0.0070 and R? = 0.8871.

This tree encodes rules describing when gmono is probably wrong.
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Benchmark Models: Compare to Linear Models

10 — p_glm_DEFAULT_NEXT_MONTH
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p_l

0 100 200 300 400 500

Ranked Row Index

For a range of probabilities € (~ 0.2, ~ 0.6), gmono displays exactly incorrect prediction
behavior as compared to a benchmark GLM.
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Remediation: gyono

Over-emphasis of PAY _0:

® Engineer features for payment trends or stability.
® Strong regularization or missing value injection during training or inference.

Sparsity of PAY _0 > 2 training data: Increase observation weights.

Payments > credit limit: Inference-time model assertion [5].

Disparate impact: Adversarial de-biasing [8] or model selection by minimal disparate impact.
Security vulnerabilities: API throttling, authentication, real-time model monitoring.

Large logloss importance: Evaluate dropping non-robust features.

Poor accuracy vs. benchmark GLM: Blend gmono and GLM for probabilities € (~ 0.2, ~ 0.6).

Miscellaneous strategies:
® Local feature importance and decision tree rules can indicate additional inference-time model
assertions, e.g., alternate treatment for locally non-robust features in known high-residual ranges of
the learned response function.
® Incorporate local feature contributions to logloss into training or inference processes.
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Remediation: General Strategies

Technical:

Calibration to past data

Data augmentation

Discrimination remediation
Experimental design

Interpretable models

Model or model artifact editing

Model assertions

Model monitoring

Monotonicity and interaction constraints

Strong regularization or missing value
injection during training or inference

Process:

Appeal and override
Bug bounties
Demographic and professional diversity
Domain expertise
Incident response plans
Model risk management
® Effective challenge and human review
Software quality assurance

Red-teaming
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This presentation:

https://www.github.com/jphall663/jsm_2019

Code examples for this presentation:
https://www.github.com/jphall663/interpretable_machine_learning_with_python
https://www.github.com/jphall663/responsible_xai
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