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What is Model Debugging?

• Model debugging is an emergent discipline focused on discovering and remediating
errors in the internal mechanisms and outputs of machine learning models.∗

• Model debugging attempts to test machine learning models like software (because
the models are software).

• Model debugging is similar to model validation and regression diagnostics, but for
machine learning models.

• Model debugging promotes trust directly and enhances interpretability as a
side-effect.

∗See https://debug-ml-iclr2019.github.io/ for numerous examples of model debugging approaches.
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Why Debug?

AI incidents: The AI Incident Database contains over 2,000 incident reports.†

†See https://incidentdatabase.ai/ to access the database.
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Why Debug?

• Constrained, monotonic GBM probability of
default (PD) classifier, gmono.

• Grid search over hundreds of models.
• Best model selected by validation-based early

stopping.
• Seemingly well-regularized (row and column

sampling, explicit specification of L1 and L2
penalties).

• No evidence of over- or under-fitting.
• Better validation logloss than benchmark GLM.
• Decision threshold selected by maximization of F1

statistic.
• BUT traditional assessment can be inadequate!

Validation Confusion Matrix at Threshold:
Actual: 1 Actual: 0

Predicted: 1 1159 827
Predicted: 0 1064 6004
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Why Debug?

Machine learning models can be unnecessary.

gmono PD classifier over-emphasizes the most important feature, a
customer’s most recent repayment status, PAY_0.

gmono also struggles to predict default for favorable statuses,
−2 ≤ PAY_0 < 2, and often cannot predict on-time payment

when recent payments are late, PAY_0 ≥ 2.
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Why Debug?

Machine learning models can perpetuate sociological biases [1].

Group disparity metrics are out-of-range for gmono across different marital statuses.
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Why Debug?

Machine learning models can have security vulnerabilities [2], [6], [7].‡

‡See https://bit.ly/3jyYtzi for full size image.
8

https://bit.ly/3jyYtzi


What? Why? How? Acknowledgements References

How to Debug Models?
As part of a holistic, low-risk approach to machine learning [4].
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Sensitivity Analysis: Partial Dependence and ICE

• Training data is very sparse for PAY_0 > 2.
• ICE curves indicate that partial dependence is likely trustworthy and empirically confirm monotonicity, but

also expose adversarial attack vulnerabilities.
• Partial dependence and ICE indicate gmono likely learned very little for PAY_0 ≥ 2.
• PAY_0 = missing gives lowest probability of default.
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Sensitivity Analysis: Search for Adversarial Examples

Adversary search confirms multiple avenues of
attack and exposes a potential flaw in gmono
inductive logic: default is predicted for
customer’s who make payments above their
credit limit. (Try heuristics, evolutionary
learning or packages like cleverhans to generate
adversarial examples.)
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Sensitivity Analysis: Robustness to Drift

Figure: gmono accuracy under feature perturbation.

• Models must be robust to data drift once
deployed.

• Simulation, perturbation, and statistics
like population stability index (PSI), t,
and Kolmogorov-Smirnov (K-S) can help
assess robustness.

• Drift can also be measured on a
feature-by-feature basis across data
partitions.

• Likely due to monotonicity contraints
gmono holds up well to moderate data
perturbation.
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Sensitivity Analysis: Random Attacks

• In general, random attacks are a viable method to identify software bugs in machine learning pipelines.
(Start here if you don’t know where to start.)

• Random data can apparently elicit all probabilities ∈ [0, 1] from gmono.
• Around the decision threshold, lower probabilities can be attained simply by injecting missing values, yet

another vulnerability to adversarial attack.
• Chaos testing is a broader approach that can also elicit unexpected approaches from machine learning

systems.
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Sensitivity Analysis: Underspecification

• Without domain-informed constraints ML models suffer from underspecification [3].
• Explicit tests for underspecification involve assessing model performance stability across perturbed

computational hyperparameters: seeds, threads, number of GPUs, etc.
• Likely due to monotonicity constraints, gmono performance appears stable across random seeds.
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Residual Analysis: Segmented Error Analysis

• Notable change in accuracy and error characteristics for PAY_0 ≥ 2.
• For SEX, accuracy and error characteristics vary little across individuals represented in the training data. Bias mitigation should

be confirmed by more involved bias testing.
• Overfitting, stability and other characteristics should also be analyzed by segment.
• Varying performance across segments can be an indication of underspecification.
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Residual Analysis: Plotting Residuals

Figure: Residuals plotted by PAY_0 reveal a
serious problem with gmono.

• Plotting residuals is a battle-tested
model debugging technique.

• Residuals can be plotted using many
approaches:

• Overall, by feature (at left) or by
segment

• Traditional (ŷ (i) − y (i))
• Deviance or loss residuals (at left)

• Residuals can reveal serious issues and
the underlying problems behind them.
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Residual Analysis: Local Contributions to Logloss

Exact, local feature contributions to logloss can be calculated, enabling ranking of features contributing to
logloss residuals for each prediction. Shapley contributions to XGBoost logloss can be calculated using the
shap package. This is a time-consuming calculation.
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Residual Analysis: Non-Robust Features

Globally important features PAY_3 and PAY_2 are more important, on average, to the loss than to the
predictions.
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Residual Analysis: Modeling Residuals

Decision tree model of gmono DEFAULT_NEXT_MONTH = 1 logloss residuals with
3-fold CV MSE = 0.0070 and R2 = 0.8871.

This tree encodes rules describing when gmono is probably wrong.
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Benchmark Models: Compare to Linear Models

For a range of probabilities ∈ (∼ 0.2,∼ 0.6), gmono displays exactly incorrect prediction
behavior as compared to a benchmark GLM.
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Remediation: gmono

• Over-emphasis of PAY_0:
• Engineer features for payment trends or stability.
• Strong regularization or missing value injection during training or inference.

• Sparsity of PAY_0 > 2 training data: Increase observation weights.
• Payments ≥ credit limit: Inference-time model assertion [5].
• Disparate impact: Adversarial de-biasing [8] or model selection by minimal disparate impact.
• Security vulnerabilities: API throttling, authentication, real-time model monitoring.
• Large logloss importance: Evaluate dropping non-robust features.
• Poor accuracy vs. benchmark GLM: Blend gmono and GLM for probabilities ∈ (∼ 0.2,∼ 0.6).

• Miscellaneous strategies:
• Local feature importance and decision tree rules can indicate additional inference-time model

assertions, e.g., alternate treatment for locally non-robust features in known high-residual ranges of
the learned response function.

• Incorporate local feature contributions to logloss into training or inference processes.
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Remediation: General Strategies

Technical:
• Calibration to past data
• Data augmentation
• Discrimination remediation
• Experimental design
• Interpretable models
• Model or model artifact editing
• Model assertions
• Model monitoring
• Monotonicity and interaction constraints
• Strong regularization or missing value

injection during training or inference

Process:
• Appeal and override
• Bug bounties
• Demographic and professional diversity
• Domain expertise
• Incident response plans
• Model risk management

• Effective challenge and human review
• Software quality assurance
• Red-teaming
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This presentation:
https://www.github.com/jphall663/jsm_2019

Code examples for this presentation:
https://www.github.com/jphall663/interpretable_machine_learning_with_python
https://www.github.com/jphall663/responsible_xai
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