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Responsible ML Blueprint†

†This blueprint does not address ETL workflows.
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EDA and Data Visualization

• Know thy data.
• OSS: H2O-3 Aggregator
• References: Visualizing Big Data

Outliers through Distributed
Aggregation; The Grammar of
Graphics
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http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/aggregator.html
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Interlude: My Favorite Visualizations

A network graph capturing the Pearson correlation relationships
between many columns in a lending dataset.

An autoencoder projection of the MNIST data. Projections capture
sparsity, clusters, hierarchy, and outliers in rows of a dataset.

Both of these images capture high-dimensional datasets in just two dimensions.
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Establish Benchmarks

Establishing reproducible benchmarks from which to gauge improvements in accuracy, fairness, interpretability
or privacy is crucial for good (“data”) science and for compliance.

6
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Manual, Private, Sparse or Straightforward Feature Engineering

• OSS: elasticnet, Feature Tools
• References: Sparse Principal

Component Analysis; Label, Segment,
Featurize: A Cross Domain Framework
for Prediction Engineering;
t-Closeness: Privacy Beyond
k-Anonymity and l -diversity

7

https://cran.r-project.org/web/packages/elasticnet/index.html
https://index.pocketcluster.io/featuretools-featuretools.html


Technical Solutions Process Solutions Acknowledgements References

Preprocessing for Fairness, Privacy or Security

• OSS: IBM AIF360 and diffprivlib
• References: Data Preprocessing

Techniques for Classification Without
Discrimination; Certifying and
Removing Disparate Impact;
Optimized Pre-processing for
Discrimination Prevention;
Privacy-Preserving Data Mining;
Differential Privacy and Machine
Learning: A Survey and Review
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https://github.com/IBM/AIF360
https://github.com/IBM/differential-privacy-library
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Constrained, Fair, Interpretable, Private or Simple Models

• OSS: Accurate Intelligible Models with
Pairwise Interactions (GA2M/EBM);
Rudin Group models e.g. Scalable
Bayesian Rule Lists (SBRL); Monotonic
gradient boosting machines in H2O-3 or
XGBoost; pymc3

• References: Scalable Private Learning
with PATE; Mitigating Unwanted Biases
with Adversarial Learning; Bayesian
Networks; Explainable Neural Networks
Based on Additive Index Models (XNN)
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https://github.com/interpretml/interpret
https://github.com/interpretml/interpret
https://users.cs.duke.edu/~cynthia/code.html
https://github.com/h2oai/h2o-3/blob/master/h2o-py/demos/H2O_tutorial_gbm_monotonicity.ipynb
https://xiaoxiaowang87.github.io/monotonicity_constraint/
https://docs.pymc.io/
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Prediction Calibration

• Just because a number is in [0, 1] does
not make it a probability.
• OSS: scikit-learn
• References: Predicting Good

Probabilities with Supervised Learning
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https://scikit-learn.org/stable/modules/calibration.html
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Traditional Model Assessment and Diagnostics

Residual analysis, Q-Q plots, AUC and lift curves etc. confirm model is accurate and meets assumption criteria.

11
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Post-hoc Explanations

• Explanations enable understanding and
appeal ... not trust.

• OSS: alibi, shap

• References: Counterfactual Explanations
without Opening the Black Box:
Automated Decisions and the GPDR; A
Unified Approach to Interpreting Model
Predictions; Interpreting Blackbox Models
via Model Extraction; Please Stop
Explaining Black Box Models for High
Stakes Decisions (criticism)
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https://github.com/SeldonIO/alibi
https://github.com/slundberg/shap
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Interlude: The Time–Tested Shapley Value

1. In the beginning: A Value for N-Person Games, 1953
2. Nobel-worthy contributions: The Shapley Value: Essays in Honor of Lloyd S.

Shapley, 1988
3. Shapley regression: Analysis of Regression in Game Theory Approach, 2001
4. First reference in ML? Fair Attribution of Functional Contribution in Artificial

and Biological Networks, 2004
5. Into the ML research mainstream, i.e. JMLR: An Efficient Explanation of

Individual Classifications Using Game Theory, 2010
6. Into the real-world data mining workflow ... finally : Consistent Individualized

Feature Attribution for Tree Ensembles, 2017
7. Unification: A Unified Approach to Interpreting Model Predictions, 2017

13
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Model Debugging for Accuracy, Privacy or Security

• Eliminating errors in model predictions by testing:
adversarial examples, explanation of residuals,
random attacks and “what-if” analysis.

• OSS: cleverhans, pdpbox, what-if tool, robustness
• References: Modeltracker: Redesigning

Performance Analysis Tools for Machine
Learning; A Marauder’s Map of Security and
Privacy in Machine Learning: An overview of
current and future research directions for making
machine learning secure and private; The Security
of Machine Learning
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https://github.com/tensorflow/cleverhans
https://github.com/SauceCat/PDPbox
https://pair-code.github.io/what-if-tool/index.html
https://github.com/MadryLab/robustness
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Machine Learning Attacks‡

‡See https://github.com/jphall663/secure_ML_ideas for full size image and more information.
15

https://github.com/jphall663/secure_ML_ideas
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Post-hoc Disparate Impact Assessment and Remediation

• Social bias testing should include
group fairness tests and should
attempt to consider individual fairness.
• OSS: aequitas, IBM AIF360, themis
• References: Fairness Through

Awareness; Decision Theory for
Discrimination-aware Classification;
Equality of Opportunity in Supervised
Learning; Certifying and Removing
Disparate Impact
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https://github.com/dssg/aequitas
https://github.com/IBM/AIF360
https://github.com/LASER-UMASS/Themis
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Quantify and Plan for Risk

Your model will be wrong. Stake-holders need to understand and be prepared for the human and financial costs
of these wrong decisions.

17
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Human Review and Documentation

• Reference: Model Cards for Model
Reporting
• Documentation of considered

alternative approaches typically
necessary for compliance.

18
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Deployment, Management and Monitoring

• Monitor models for accuracy, disparate
impact, privacy violations or security
vulnerabilities in real-time; track model
and data lineage.
• OSS: DVC, gigantum, KubeFlow,

mlflow, modeldb, TensorFlow ML
Metadata, TensorFlow TFX,
awesome-machine-learning-ops
metalist
• Reference: Model DB: A System for

Machine Learning Model Management
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https://dvc.org/
https://gigantum.com/
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://github.com/mlflow/mlflow
https://github.com/mitdbg/modeldb
link:https://www.tensorflow.org/tfx/guide/mlmd
link:https://www.tensorflow.org/tfx/guide/mlmd
https://www.tensorflow.org/tfx
https://github.com/EthicalML/awesome-machine-learning-operations
https://github.com/EthicalML/awesome-machine-learning-operations
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Kill Switches

Being able to quickly turn off a misbehaving ML system is crucially important. This requires technical and
organizational considerations. E.g., how much revenue is lost each minute a model is disabled?

20
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Human Appeal

Very important, may require custom implementation for each deployment environment? Related
problems exist today .

21

https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html
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Decommission Model

When a model becomes absolutely or relatively inaccurate, unfair, or insecure it must be taken out of
service, but saved in an executable and reproducible manner.

22
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Causality?

• Root cause analysis: can root causes
be identified, verified? Formalized into
model architecture?
• OSS: dowhy, pymc3
• References: The Book of Why: the

New Science of Cause and Effect;
Probabilistic Programming in Python
using PyMC3

23

https://github.com/microsoft/dowhy
https://docs.pymc.io/
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Iterate: Use Gained Knowledge to Improve Accuracy, Fairness,
Interpretability, Privacy or Security

Improvements, KPIs should not be restricted to accuracy alone.
24
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Process Solutions

• Bug Bounties: Offer rewards to the broader community to find all kinds of
problems (discrimination, opacity, vulnerabilities, privacy harms, etc.) in your
organization’s public-facing ML systems.
• Data and AI Principles: Devise central tenants for how your organization will

handle ethical, political, and legal issues related to data and ML.
• Diversity of Experience: Ensure data and ML teams are staffed with individuals

that can share different demographic, technical, and professional perspectives.

25
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Process Solutions

• "Dog-fooding": If possible, test your ML system on yourself or internally at your
organization. Don’t feel comfortable using it on yourself? Maybe you shouldn’t
release it.
• Documentation: Documentation ends up being the primary physical

implementation of many risk controls.
• Domain Expertise: Success in ML almost always requires input from humans

with deep understanding of the problem domain.
• Effective Challenge and Human Review: Nearly all aspects of ML workflows

should involve challenges and questioning from group members. This can be in the
form of human interrogation of ML-related processes or in the form of challenger
models.
• Executive Oversight: An empowered executive with a staff and budget can exert

a strong influence over organizational use of ML.
26
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Process Solutions

• Incident Response Plans: Complex ML systems will fail. Being prepared for
failures or attacks can be the difference between a major incident and a minor
disruption.
• Incentives: Model builders, testers, auditors, and executives all have different

roles to play in the implementation of responsible ML and should be incentivized
to play the correct role.
• Legal Privilege: Consider use of privilege to minimize risk when dealing with

ML-related legal and compliance issues.
• Model Risk Management: The established practice of model risk management

can be expanded outside of financial services.
• Red-teaming: Establish a group or hire third-parties to act as adversaries and find

problems (discrimination, opacity, vulnerabilities, privacy harms, etc.) in your
organization’s public-facing ML systems.

27
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