lime_xgboost¶
Simple package for creating LIMEs for XGBoost
-
class
lime_xgboost.lime_explainer.
LIMEExplainer
(training_frame=None, X=None, model=None, N=None, discretize=None, quantiles=None, seed=None, print_=None, top_n=None, intercept=None)¶ Bases:
object
Basic framework for building Local, Interpretable, Model-agnostic Explanations (LIMEs) for XGBoost models. Supports regression and binomial classification. Requires h2o, numpy, pandas, and xgboost packages.
Variables: - training_frame – Pandas DataFrame containing the row to be explained, mandatory.
- X – List of XGBoost model inputs. Inputs must be numeric, mandatory.
- model – Trained XGBoost booster to be explained, mandatory.
- N – Size of LIME local, perturbed sample. Integer, default 10000.
- discretize – Numeric variables to discretize. List, default X.
- quantiles – Number of bins to create in numeric variables. Integer, default 4.
- intercept – Whether local linear models should include an intercept. Boolean, default True. (EXPERIMENTAL)
- seed – Random seed for enhanced reproducibility. Integer, default 12345.
- print – Whether to print a table of local contributions (reason codes) and plot top_n local contributions (reason codes). Boolean, default True.
- top_n – Number of highest and lowest Local contributions (reason codes) to plot. Integer, default 5.
- reason_code_values – Pandas DataFrame containing local contributions (reason codes) for model and row to be explained.
- lime_r2 – R2 statistic for trained local linear model, float.
- lime_pred – Prediction of trained local linear model for row of interest.
- lime – Trained local linear model, H2OGeneralizedLinearEstimator.
- bins_dict – Dictionary of bins used to discretize the LIME sample.
Reference: https://arxiv.org/abs/1602.04938
-
explain
(row_id)¶ Executes lime process.
Parameters: row_id – The row index of the row in training_frame to be explained.